Supervised ranking from semantics to algorithms

نویسندگان

  • Kim Cao-Van
  • Bernard De Baets
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Ensemble Ranking

Ranking plays a central role in many Web search and information retrieval applications. Ensemble ranking, sometimes called meta-search, aims to improve the retrieval performance by combining the outputs from multiple ranking algorithms. Many ensemble ranking approaches employ supervised learning techniques to learn appropriate weights for combining multiple rankers. The main shortcoming with th...

متن کامل

Label Ranking Algorithms: A Survey

Label ranking is a complex prediction task where the goal is to map instances to a total order over a finite set of predefined labels. An interesting aspect of this problem is that it subsumes several supervised learning problems such as multiclass prediction, multilabel classification and hierarchical classification. Unsurpisingly, there exists a plethora of label ranking algorithms in the lit...

متن کامل

Sentiment Intensity Ranking among Adjectives Using Sentiment Bearing Word Embeddings

Identification of intensity ordering among polar (positive or negative) words which have the same semantics can lead to a finegrained sentiment analysis. For example, master, seasoned and familiar point to different intensity levels, though they all convey the same meaning (semantics), i.e., expertise: having a good knowledge of. In this paper, we propose a semisupervised technique that uses se...

متن کامل

Semi-supervised ranking for document retrieval

Ranking functions are an important component of information retrieval systems. Recently there has been a surge of research in the field of “learning to rank”, which aims at using labeled training data and machine learning algorithms to construct reliable ranking functions. Machine learning methods such as neural networks, support vector machines, and least squares have been successfully applied...

متن کامل

دسته‌بندی داده‌های دورده‌ای با ابرمستطیل موازی محورهای مختصات

One of the machine learning tasks is supervised learning. In supervised learning we infer a function from labeled training data. The goal of supervised learning algorithms is learning a good hypothesis that minimizes the sum of the errors. A wide range of supervised algorithms is available such as decision tress, SVM, and KNN methods. In this paper we focus on decision tree algorithms. When we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003